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Diffusion-limited annihilation with initially separated reactants

P. L. Krapivsky
Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215
(Received 14 November 1994)

A diffusion-limited annihilation process A4 + B — with species initially separated in space is investi-
gated. A heuristic argument suggests the form of the reaction rate in dimensions less or equal to the
upper critical dimension d,=2. Using this reaction rate we find that the width of the reaction front

grows as 174§

in one dimension and as ¢!/%(In#)!/3 in two dimensions.

PACS number(s): 82.20.—w, 05.40.+j, 02.50.—r, 82.70.—y

In this paper, we investigate the kinetics of diffusion-
limited two-species annihilation process 4 +B—O in
which collisions between two distinct species 4 and B
lead to the formation of inert reaction products. Classi-
cally, such a process can be described by reaction-
diffusion equations [1]
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Here @ =a(x,t) and b =b(x,t) are the local concentra-
tions of 4 and B species, respectively, D is the diffusion
coefficient, which is assumed to be identical for both
species, and r =r(x,t) is the reaction rate. In the mean-
field approximation this reaction rate is proportional to
concentrations of reactants » =kab. For sufficiently low
dimensions, the diffusion mechanism is not efficient
enough and fluctuations in the densities of diffusing reac-
tants will result in a different form for the reaction rate
and dimension-dependent kinetic behavior at long times
[2].

Several recent studies have been focused on the situa-
tion in which species are initially separated in space and
hence they react in a confined region called the reaction
front. This front plays an important role for a variety of
physical and chemical processes [3]. At the mean-field
level, a scaling theory has been developed [4] that pre-
dicts that the width of the reaction front w grows in time
as t'/% in agreement with experiments [5] and simulations
[5-71.

Since the upper critical dimension for this process ap-
pears to be d.=2 [7], a departure from the value a=1{
for the width exponent is expected for d <2. Numerical
simulations of one-dimensional systems suggest the value
a=0.3 [7-9]. However, an exact value of the width ex-
ponent in one dimension is unknown. In two recent
works it was argued that ¢=1 in one dimension. Both
these studies are based on analysis of more tractable sys-
tems: the first paper [10] examines the case in which one
reactant is static and other diffuses while the second pa-
per [11] treats the behavior of the front in the steady state
reached by imposing the antiparallel current densities of
A and B species at x =+ 0 and — oo, respectively. The
latter steady state version of the original model was intro-
duced in [12] and further explored in [13].
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In the present study, we investigate the original tran-
sient problem of initially separated equally mobile
species. Our analysis is based on the rate equations ap-
proach, but with a modified reaction rate. In one dimen-
sion, we find = in agreement with previous studies. In
two dimensions we derive a logarithmic correction to the
mean-field behavior: w ~¢!/%In¢)!/3. While it may be
difficult to confirm this logarithmic correction numerical-
ly, a significant departure from the mean-field behavior,
w ~ 1/, has been observed [7].

Let us first estimate the reaction constant k in the
mean-field relation » =kab. It is reasonable to assume
that the reaction constant depends on the diffusion con-
stant D and the radius of particles R, which, for simplici-
ty, is assumed to be the same for both species. Simple di-
mensional analysis gives k& ~DR%72. On physical
grounds, the reaction constant must be an increasing
function of the radius R and hence the previous expres-
sion for k is valid only for d>2. To find the reaction
constant for d <2 we should assume that k does not de-
pend on R, but instead it depends on concentrations

k =k (D,a,b). A dimensional analysis gives k~D (a
~+b)"1%2/d and therefore
r~Dab(a+b)" 1724 )

In fact, any symmetric function » =r(a,b) of densities a
and b with a degree of homogeneity 1+2/d is equally
possible. However, in finding scaling exponents the pre-
cise form of the reaction term is unimportant and for
concreteness we choose the form given above. Note that
this simple dimensional argument also correctly predicts
the value of the upper critical dimension d, =2.

This type of argument was first applied by Toussaint
and Wilczek [14] to homogeneous single-species annihila-
tion A+ A4A—2 and led to the gualitatively correct
long-time kinetic behavior a ~(Dt)™%/2 for d <2. In con-
trast, for homogeneous two-species annihilation
A +B — this argument predicts the incorrect value of
the upper critical dimension (the correct value is d. =4)
and the incorrect kinetic behavior (z?/? instead of
t 7974 see [2,14]). Because of this difficulty there were no
attempts to apply the argument to inhomogeneous two-
species annihilation. It can be readily seen that a large-
scale spatial organization of reactants [2,14] for homo-
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geneous two-species annihilation leads to this difficulty.
Indeed, the reaction takes place only near boundaries be-
tween different-species domains. The fraction of space
occupied by these reaction zones tends to zero as t—
[15]. Hence modeling the reaction term by a function of
averaged concentrations a(¢) and b(t) is inappropriate
since it gives the same reaction rate inside single-species
domains where the reaction does not proceed and in the
boundaries. However, for inhomogeneous two-species an-
nihilation, the behavior in reaction zone where the reac-
tion does proceed is of interest. Therefore, a description
of reaction zone by using a (modified) reaction rate that is
a function of local concentrations a(x,t) and b(x,t)
seems reasonable.

Consider now a one-dimensional inhomogeneous sys-
tem in which A4 particles are uniformly distributed to the
right of the origin and B particles are uniformly distribut-
ed to the left of the origin, both with equal concentration
¢o. The difference a(x,t)—b(x,t) satisfies the diffusion
equation, which, subject to given initial conditions, has
the solution

a(x,t)—b(x,t)=cyerf (3)

Vabr
In the long-time limit, the scaling form
a(x,t)~t Y A(xt™%),
b(x,t)~t"YB(xt™ ), 4
rix,t)~t PR(xt %)

is expected. Since r ~(a +b)ab in one dimension [see Eq.
(2)], the scaling form of Eq. (4) implies the scaling rela-
tion B=3y. Further, by inserting Eq. (4) into Eq. (2) and
asymptotically balancing various terms one finds another
scaling relation ¥ +2a=3y. Finally, assuming the reac-
tion zone is short compared to the diffusion length V' D¢
and making use of the exact solution (3) one gets
a—b=~cox/V'wDt ~t* 12, This gives the last scaling
relation a+y=1. Combining these scaling relations we
find the exponents a=y =41 and B=3. Note that the
width indeed increases slower than the diffusion length
w ~t1* <<t!2, thus confirming our assumption. Rewrit-
ing the scaling ansatz in dimensionless form, we arrive at

2 1/4
0
a(x,t)~ D AE),
2 1/4
bix, )~ |2 | Bg) ()
b - Dt b
2 3/4
(x,0)=D |2 | R
r ’ - Dt‘ ’

with the scaling variable £=x (c3 /Dt)!/4.

Substituting Egs. (5) into the governing equations (1)
and making use of Eq. (3) we arrive at the still intractable
nonlinear ordinary differential equation. However, if we
focus on the region far enough from the origin £>>1,
some progress can be made. To find the scaling form of
densities we have to choose an appropriate form of the
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reaction rate. Let us mention that the reaction rate given
by Eq. (2) at d=1, r ~Dab (a +b), has an additional ad-
vantage of being linear in concentration, which is small
compared to the other, e.g., r ~Da’b «< b if b <<a. This
physically appealing behavior suggests to use this partic-
ular form.

So, let us examine Egs. (1) with the reaction rate

r =«kDab(a +b) , (6)

where k is a dimensionless constant. In the region
(Dt /c§)/* <<x <<V'Dt, where the A species dominates,
Eq. (3) simplifies to a ~cx /V'wDt, which can be rewrit-
ten as A(E)~E/V'm in the scaling form. Then the
second Eq. (1) asymptotically reduces to

da’8 _ «
degt w

By applying the WKB procedure [16] one finds the
asymptotic solution to Eq. (7),

£28 . (7

: 172
,‘B(§)~—‘/—Eexp

K 2
[k , 8
44 3 ] ®
which is valid for £>>1, i.e., for x >>(Dt/c3)!/*. Com-
bining Egs. (5), (6), and (8) we arrive at the final asymp-
totic expression for the reaction rate:
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for (Dt /¢})!/* <<x <<V'Dt.

Let us compare our prediction for the tail of the scal-
ing distribution Eq. (9) with other studies. In a recent pa-
per [8], the validity of the scaling distribution has been
challenged and a description based on a continuous spec-
trum of scales between ¢!/# and ¢3/® has been proposed.
In particular, Araujo et al. have fitted the tail of the re-
action front by the exponential form r ~exp[ — |x|/z3/8].
In a very recent study [17], Cornell has reconsidered the
problem. Based on extensive simulations he has found
that the dynamical scaling appears to hold, contrary to
the claim of Ref. [8]. He has obtained a~0.28 for the
width exponent and observed that the reaction rate
profile has a Gaussian form. Thus our results well agree
with the most extensive present simulations [17].

Let us now turn to the two-dimensional version of the
problem. The same line of reasoning gives the reaction
rate »r ~Dab and hence the mean-field behavior could be
expected. However, d=2 is the marginal dimension, log-
arithmic corrections to mean-field expression r~Dab
may arise, and therefore one has to be more careful. To
assess the validity of the mean-field expression for the re-
action rate let us start from more fundamental relation
r~b /T, where T is a time interval in which a B particle
typically collides with some A particle. Consider for sim-
plicity the region in which the A4 species dominates. In a
reference frame at rest with respect to an arbitrary ‘“‘tar-
get” B particle, the density a(x +r,¢z +7) of A particles
is governed by the diffusion equation
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da(x +r,t +71)
or

We should solve this equation subject to the initial condi-
tion a(7=0)=a(x,t) [since the local density is a(x,t)]
and the adsorbing boundary condition a (|r| =2R)=0 for
7>0. When D7>>R?, an approximate solution to Eq.
(10) with prescribed initial and boundary conditions can
be readily found by using a quasistatic approximation
(see, e.g., [18]). This solution reads
21In(r/2R)
In(D7/R?) ’
Note that the “local” density given by Eq. (11) is changed
on the length scale of the order V' D+, which has to be
small compared to the length scale of the “external” den-
sity a (x,1), i.e., V D7 <<w. We will assume that both ine-
qualities R2<<V'Dt <<w hold and therefore Eq. (11)
may be applied to estimate the collision time 7. From
the final expressions for T and w it is straightforward to
verify that previous inequalities are indeed satisfied in the
long-time limit, thus providing the check of self-
consistency.

The collision time T may be evaluated by computing
the flux to the circle of radius 2R and then by equating
the flux to the unity

Tda(|r|=2R,t +7) ,
dr=

or
By combining Egs. (12) and (11) one gets the final esti-

mate T =~In(1/87aR?)/8wDa. Thus we obtain the ex-
pression for the reaction rate

=2DAa(x +r,t +7) . (10

a(x +r,t +7)=a(x,t) 1n

87DR [ 1. (12)

r =87 Dab 1 + 1 . (13)

In(1/8maR?) In(1/87bR?)

The second term is added to keep » =r(a,b) symmetric.
In the region x >>w, which we have considered, the
second term is small and thus never appeared. Similarly,
in the region —x << —w the first term is negligible. Since
the reaction rate must be symmetric function of the den-
sities, Eq. (13) provides a proper combine approximation
in both tail regions. It is therefore reasonable to assume
that Eq. (13) is in fact accurate everywhere in reaction
zone. So instead of the mean-field expression for the re-
action rate in two dimensions r =Dab, a refined argu-
ment gives a logarithmically corrected value (13).
Now let us try a scaling ansatz
1/3

LFA(E),

cg

a(x,t)~

1/3

LEB(E) ,

2/3 (14)
LYR(&) ,

b(x,t)~ (F

<3
t
5
r(x,t)~D Dr
1/6
L*,

2
€o

§=x | oy

where we have used a shorthand notation L for the loga-
rithmic factor L =In(Dt /c3R®). Equation (14) is just the
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standard mean-field scaling ansatz [4] modified by loga-
rithmic corrections. A procedure identical to the one
used in the one-dimensional situation gives three scaling
relations between ‘“logarithmic” exponents A, u, and v
from which one finds A=v=—1 and u=1.

The main lesson from this study is the following: Even
for sufficiently low dimensions d <d_,, when the strong
correlations destroy the mean-field approximation, it is
still possible to use mean-field-like diffusion-reaction
equations with modified reaction rates. At the critical di-
mension, the present heuristic method gives subtle loga-
rithmic corrections, which seem hard to obtain by more
solid theoretical approaches.

Let us finally mention that the more general higher-
order annihilation reaction process mA4 +nB—0 with
initially separated species can be analogously investigated
by the present approach. Since the critical dimension for
this reaction process is d,=2/(m +n —1) (see, e.g., [11]),
deviations from the mean-field predictions are expected
only for the classic case (m,n)=(1,1) (when d=1 and 2)
and for (m,n)=(2,1) (when d =d.=1). Consider the
latter case and assume that pointlike particles undergo a
random walk on the linear lattice with spacing Ax. (Even
in one dimension we must keep the lattice spacing finite
since otherwise the reaction with three-particle interac-
tion is absent.) Focus again on the region where the 4
species dominates and estimate the collision time T.
Note that the collision event, i.e., the situation when two
A particles will be simultaneously in the site with a target
B particle, may be described as usual two-body collision
between an immobile target particle and imaginary parti-
cles corresponding to pairs of A particles and diffusing on
the two-dimensional square lattice with the same spacing
Ax. A more detailed description of this correspondence
is given in Ref. [19], which considers a related single-
species aggregation process 4 + 4 +A4-— A. Then up
to the replacement of the one-dimensional density a
by the two-dimensional density of pairs a? and the spac-
ing Ax by the radius R one can use previous results
[see Egs. (10)-(12)] and find the collision time
T~In(1/87a*Ax?)/8wDa®. So we obtain r~Da2b/
In(1/aAx) while the mean-field approach would give
r~Da?b. This results in logarithmic corrections to the
mean-field behavior. Repeating the steps employed for
the previous treatment of two-particle annihilation we ar-
rive at the scaling form

a(x,t)~(L/t)V4A(E) ,
b(x,t)~(L/t)V*B(E) , (15)
rix,t)~t 7340 "1V4AR(E) |

Here £=x(c3/DtL)'/* is the scaling variable and
L =In(Dt /c3Ax*) the logarithmic factor. Thus we con-
clude that the width of the reaction front for the three-
particle reaction process 24 +B—@ scales as
t4(Int)!/* in one dimension.
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